#### Numbers & Music

What Is The Connection?





# Counting

 "Nothing can be farther from the working musician's mind than counting, nothing farther from the working mathematician's mind than singing, and yet there is something common to both." — Viktor Zuckerkandl, Man the Musician, 1973



## Counting Necklaces

- How many 4-bead necklaces?
- Two possible colors for each bead



#### First Answer



 But some of these are the <u>same</u>!



## Equivalence

- Necklaces are equivalent by rotation
- Equivalence relation ⇒ a <u>partition</u> into classes



#### Classes

- Start by listing them all
- Circle the equivalent graphs



#### The Answer

There are 6 different necklaces

#### Patterns

- Patterns are easier to see with more dimensions
- Example: roots of polynomials in the complex plane



## Table vs. List

- Is the pawn in danger?
- How would a rook move?
- How would a <u>knight</u> move?



# Менде

- Hydrogen H 1
- He Helium
- Li Lithium
- Beryllium Be
- B Boron
- 23456789 C Carbon
- N Nitrogen
- O Oxygen
- Fluorine F
- 10 Ne Neon

625

| H  | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | He |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Li | Be |    |    |    |    |    |    |    |    |    |    | В  | С  | Ν  | 0  | F  | Ne |
| Na | Mg | 1g |    |    |    |    |    |    |    |    |    | Al | Si | P  | S  | Cl | Ar |
| K  | Ca | Sc | Ti | v  | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
| Rb | Sr | Y  | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I  | Xe |
| Cs | Ba | La | Hf | Ta | W  | Re | Os | Ir | Pt | Au | Hg | Tī | Pb | Bi | Po | At | Rn |

- :: Ga Gallium 31 Ge
- 32 Germanium

11

- 33 As Arsenic
- 34 Se Selenium
- 35 Br Bromine

. . ٠

36 Kr Krypton

### Piano, Guitar, ZBoard







## ZBoards & ZTars

#### Built by Harvey Starr in San Diego





## All 16 Species



## All 16 Species







10 01 11 R G B

## More Complicated

- Now we look at "necklaces" with 12 beads
- Many more cases!
- Why 12?



# Well-Tempered

- Western music divides octave into twelve equal step
- Is it just luck that this works so well?
- $(3/2)^{12} = 129.7... \approx 128$
- Twelve perfect fifths takes you (almost) through seven octaves

C C# D E b E F F# G A b A B b B C

12

## Is This Good?

The perfect fifth is too flat

The major third is too sharp

• 
$$2^{4/12} = 1.26... \approx 5/4$$

## Maybe Not



# Conductor's Complaint

 Christoph von Dohányi talks about Beethoven's Ninth Symphony

The symphony begins with about two minutes of a D-minor chord. But after that D minor comes a striking shift to B-flat major. In rehearsal, I just couldn't get that B-flat chord to sound right. I mean, I know what a major third is, and all of the players are consummate professionals, but we tried it over and over and I was never satisfied.

 A B-flat major chord needs a slightly flat D to sound sweet

#### Intervals



There are 6 different intervals

## Triads (Chords)



There are 19 of these classes

#### Scales



There are 66 different 5-note scales

## All 4096 Patterns





1010 1101 0101

352 distinct classes/colors



s/cmt/graphs\_small.png

#### Even Closer



http://www.andrewduncan.ws/cm t/graphs\_big.png

#### Similar Patterns





But on a larger scale!

#### Favorites



# Why

- These scales <u>seem</u> to contain many patterns
- How to describe this?
- We look at interval content

## Interval Content

• Q: How many major 2nds does the pentatonic scale contain?



A: three!

# Another Approach

- Find the same answer this way
- Line up identical copies...
- ...and then turn the front one



## Autocorrelation

- Count the matching notes
- Each match represents a M2 interval in the scale



## Autocorrelation

- Count the matching notes
- 3 matches ⇒ ∃ 3
   M2 intervals in the pentatonic scale
- Should say M2/m7



# Interval Spectrum

•••••

- Pentatonic contains:
  - 5 unisons (trivial)
  - 0 m2/M7
    - 3 M2/m7
  - 2 m3/M6

1 M3/m6
4 P4/P5

All different! This is unique

Maximum for all 5-scales!

•0 b 5

## Diatonic Scale



## More Properties

- This pattern is special
- What other properties does it have?





### Some Ideas

#### Local neighborhood

- Figure out from a small neighborhood where you are in the scale
- Entropy
  - Define some sort of entropy on a scale

# Intelligence

- How to prove we are smart?
- Pattern should have been on Voyager spacecraft



 $2\pi = 110.0100100001111110110101010001...$ e = 10.10110111111000010101000101100...



#### Hvala!

- More details at <a href="http://www.andrewduncan.ws/cmt">http://www.andrewduncan.ws/cmt</a>
- http://www.andrewduncan.ws/zboa rd/aes92preprint
- http://www.andrewduncan.ws/air